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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

ANGLE-~OF -ATTACK SUPERSONIC PERFORMANCE OF A CONFIGURATION
CONSISTING OF A RAMP-TYPE SCOOP INLET ILOCATED EITHER
ON TOP OR BOTTOM OF A BODY OF REVOLUTION

By Emil J. Kremzier and Robert C. Campbell

SUMMARY

An investigation to evaluate the relative merits of locating a
ramp-type scoop inlet either on top or bottom of a body of revolution
was conducted in the Lewis 8- by 6-foot supersonic wind tunnel at Mach
numbers from 1.5 to 2.0 for a range of angles of attack and inlet mass-
flow ratios.

Results of the investigation indicated that changing the inlet
location from the bottom to the top of the fuselage at angle of attack
decreased both configuration drag and inlet pressure recovery. Result-
ant thrust-minus-drag for a typical turbojet-engine installation was
greater for the top inlet at a given angle of attack. However, favor-
able and unfavorable 1lift interference for the bottom and top inlets,
respectively, resulted in superior thrust-minus-drag performance for
the bottom inlet at a given 1lift coefficient for most of the range of
the investigation. .

Comparison of top- and bottom-inlet performance for a complete
aircraft configuration with a typical turbojet-engine iunstallation
vielded thrust-minus-drag results similar to that of the inlet and
fuselage combination.

INTRODUCTION

In the design of an aircraft employing an air-breathing engine,
the air induction system is required to supply the prescribed air flow
to the engine at high pressure recovery with as little drag as possible
for efficient propulsive operation. If a fuselage scoop-type inlet is

employed, body crossflow phenomena at angle of attack complicate entrance

flow conditions for various circumferential inlet locations (ref. 1).
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2 CONFIDENTIAL NACA RM E54C09

Boundary-layer thickening and crossflow separation exist on the lee-
ward side or top surface of the fuselage at positive angles of attack
and result in large regions of low-energy air. Consequently, sizable
reductions in pressure recovery are incurred by inlets located on this
surface. On the bottom surface, however, the boundary layer is rel-
atively thin at angle of attack due to favorable crossflow effects,
and the pressure recovery of inlets located in this region is not ad-
versely affected. The bottom of the fuselage also acts as a compression
surface at angle of attack and, as a result, may even have a favorable
effect on inlet pressure recovery. In reference 1, in which the per-
formance of conical supersonic scoop inlets on circular fuselages is
reported, the drag of the bottom-inlet configuration was considerably
higher than that for the top inlet.

In order to evaluate the relative merits of a top or bottom in-
stallation, an investigation of a ramp-type scoop inlet successively
located on the top and bottom of a body of revolution was conducted in
the Lewis 8- by 6-foot supersonic wind tunnel. The scope of the inves-
tigation included free-stream Mach numbers from 1.5 to 2.0, angles of
attack from zero to 10°, and a range of inlet mass-flow ratios.

SYMBOLS

The following symbols are used in this report:

Cp dreg coefficient, D/qyS,
Cy, 1ift coefficient, L/q,Sp
Cym pitching-moment coefficient about body station 45, moment/qosml
D drag
F internal thrust of turbojet engine and inlet combination
Fy internal thrust of turbojet engine and inlet combination for
100 percent inlet total-pressure recovery
h boundary-layer scoop height
L 1lift
1 body length, 73.125 in.
M Mach number
CONFIDENTIAL
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mz/mo mass-flow ratio, unity when free-stream tube as defined by
cowl lip enters inlet

P total pressure

P static pressure

qo free-stream dynamic pressure, YpOMoz/z

Ty local body radius

Ty inlet radius for model of ref. 2

Sp force coefficient reference area for model investigated or

maximum cross-sectional area of model, 33.41 sq in.

X local body station measured from nose of body
@ angle of attack, deg

T ratio of specific heats

Subscripts:

0 free stream

2 diffuser discharge

APPARATUS AND PROCEDURE

A sketch of the model investigated with pertinent dimensions is
shown in figure 1. The fuselage consisted of the NACA RM-10 missile.

A two-dimensional 14° ramp-type inlet was mounted on the fuselage
at station 45, the station of maximum diameter, and was successively
located on the top and bottom of the fuselage. Details of the inlet
including the subsonic diffuser are shown in figure 2. Capture area
of the inlet was 3.35 square inches or approximately 11l.8 perceunt of
the basic fuselage frontal area. The inlet was designed so that the
oblique shock generated by the leading edge of the 14° ramp would fall
slightly ahead of the cowl lip at a Mach number of 2.0 and so that the
initial internal cowl-lip angle was essentially parallel to the local
flow direction behind the oblique shock. The shape of the duct eross
section varied from approximately rectangular at the entrance to cir-
cular at the exit as shown in figure 2. A constant-area section
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approximately l% hydraulic diameters in length was employed near the

cowl lip. Area variation of the duct is shown in figure 3.

The boundary-layer air was bypassed around the inlet by positioning
the ramp surface radially outward from the fuselage at a distance of
0.40 inch and inserting a wedge-shaped spacer of 16° included angle be-
tween the ramp and the fuselage surface. The leading edge of the wedge
was located 0.80 inch downstream of the leading edge of the ramp as
shown in figure 2. The wedge-spacer height chosen was approximately
equal to the boundary-layer thickness at zero angle of attack, as deter-
mined from preliminary flow surveys.

3227

Inlet mass flow was varied by meuns of a remotely controlled movable
tail-pipe plug attached to the sting support. The model was attached to
the sting by a 3-component internal strain-gage balance with its moment
center located at fuselage station 45. Axial force, normal force, and
pitching moment were measured by the strain-gage balance. Plug forces
were not included in the balance measurements since the plug was mounted
independent of the model. Base, sting, and internal thrust forces have
also been excluded from the force and moment coefficients presented in
the report. Internal thrust forces were obtained from the difference in
momentum between the diffuser exit and the free stream.

Pressure instrumentation consisted of a 19-tube total-pressure rake .
and six wall static orifices located at fuselage station 66.5 just down-
stream of the diffuser-discharge station, four base-pressure orifices,
and two chamber-pressure orifices located in the model balance cavity.

Inlet mass-flow ratio was determined from the diffuser-discharge
Mach number and average total pressure. The diffuser-discharge Mach num-
ber was obtained from the known area ratio between the diffuser-discharge
station and the exit plug, which was assumed to be choked. Average
total pressure was calculated by area weighting the total-pressure
measurenments.

The investigation was conducted for & range of inlet mass-flow ratios
at free-stream Mach numbers of 1.5, 1.8, and 2.0, and angles of attack
of zero, 3°, 69, and 10°. Average Reynolds number for the investigation
was approximately 28.0x10® based on fuselage length.
RESULTS AND DISCUSSION
Basic Model Data
Model lift, drag, and pitching-moment coefficients for both config-

urations (top and bottom inlets) are shown in figure 4 as a function of
angle of attack for three free-stream Mach numbers and supercritical
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inlet operation. At zero angle of attack, the assymmetrical inlet and
fuselage interference resulted in negative 1lift for the top-inlet con-~
figuration and positive 1lift for the configuration with the inlet on

the bottom. The lift-curve slopes were about the same for both config-
urations for angles of attack up to 6°. Above 6°, however, the lift-
curve slope became less for the configuration with the inlet on top than
that for the inlet on the bottom. The top-inlet configuration also had
a lower angle-of-atitack drag rise than that observed for the bottom
inlet.

At zero angle of attack, the effect of assymmetry of the model was
to produce a negative value of pitching-moment coefficient with the
inlet on the bottom and a positive value with the inlet on top. Differ-
ences in the pitching-moment coefficient between the top- and bottom-
inlet configurations were small, however, for angles of attack up to
6°. Above 6° the differences became greater. The slope of all the
piltching~moment curves was positive about the reference-moment center.

Inlet total-pressure recovery and model drag coefficient as a
function of mass-flow ratio for four angles of attack and three free-
stream Mich numbers are shown in figure 5 for the top- and bottom-inlet
configurations. For the top inlet (figs. 5(a) to (c)), the critical
pressure recovery and mass-flow ratio decreased significantly with in-
creasing angle of attack, while the increase in drag coefficient was
small for angles up to 6°. Critical pressure recovery and mass-flow ratio
for the bottom inlet (figs. 5(d) to (f)) increased slightly with angle
of attack except at 2 free-stream Mach number of 1.5, while a large in-
crease in drag coefficient was observed.

Evaluation of Configuration Performunce

Variation of inlet pressure recovery and ratio of actual thrust to
ideal thrust with angle of attack are shown in figure 6 for three free-
stream Mach numbers. A typical turbojet engine matched to the inlet at
a diffuser-discharge Mach number of 0.20 and operating at a 35,000~foot
altitude was assum2d. The pressure recovery remained essentially con-
stant or increased slightly with angle of attack for the bottom inlet
but decreased rapidly with increasing angle of attack for the top inlet.
Since the internal thrust of a propulsion system employing a turbojet
engine is directly proportional to the pressure recovery of the inlet,
the thrust ratio F/Fj had the same trend with angle of rhtack as the
inlet pressure recoveries. Conserquently, if only the inlet pressure
recovery is considered, the internal thrust capabilities of a turbojet
propulsion system are far greater for the bottom inlet than for the
top-inlet configuration.
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The excess thrust available from a given configuration, however,
depends not only on the internal thrust capabilities of the propulsion
system, but also on the amount of associated external drag. Thus, if
an increase in configuration internal thrust is obtained at the expense
of a large increase in drag, the excess thrust F-D may actually de-
crease, with a resultant penalty in configuration performance.

In order to compare the excess thrust of the top- and bottom-inlet
configurations, the variation of (F-D)/Fi with angle of attack is pre-

sented in figure 7 for three free-stream Mach numbers. The excess
thrust of the top-inlet configuration was generally higher or comparable
with that of the bottom inlet at a given angle of attack. A similar
result was observed in the investigation reported in reference 1.

A more realistic comparison of excess thrust of a top-inlet and
bottom-inlet installation would be based on a given 1lift coefficient
rather than a given angle of attack. As discussed in the preceding
section, the bottom~inlet configuration had considerably more 1ift than
the top-inlet configuration at a given angle of attack because of the
favorable and unfavorsble 1lift interference of the bottom and top inlets,
respectively. If the two configurations were to operate at comparable
1ift coefficients, the angle of attack of the top-inlet configuration
would be increased beyond that for the bottom-inlet configuration. This
increase in angle of attack would be accompanied by an increase in drag
and a decrease in inlet pressure recovery with a resulting decrease in
(F-D)[Fi. In order to compare the two configurations at a given lift
coefficient, (F-D)/Fi as a function of 1lift coefficient is presented in
figure 8 for a diffuser-discharge Mach number of 0.20 at three free-
stream Mach numbers. Except for a limited range of 1lift coefficients
at a Mach number of 2.0, values of (F~D)/Fi for the bottom inlet are
higher than those for the top inlet at a given value of 1lift coefficient.

On a complete aircraft configuration, most of the 1lift would be
supplied by a wing, with only a small portion being carried by the inlet
and fuselage combination. The percentage of the complete-aircraft-
configuration 1lift represented by the amount of inlet 1lift interference
obtained in this investigation is unknown, but would probably be small.
Consequently, the change in angle of attack that would be necessary for
a complete aircraft to compensate for the change in lift produced by
changing the location of the inlet from the bottom to the top of the
fuselage would not be as great as that required for this investigation.
Thus it is possible that, for a complete aircraft configuration, (F-D)/Fi

of a top inlet may compare more favorably with a bottom inlet than was
indicated in figure 8 for this investigation.

CONFIDENTIAL

3227




L22¢

NACA RM E54C09 CONFIDENTIAL 7

Values of (F—D)/Fi for a complete aircraft configuration were cal~
culated from the model data of reference 2 and are presented in figure
9 as a function of trim 1lift coefficient for a free-stream Mach number
of 2.0. A typical turbojet engine operating at a 35,000-foot altitude
with an inlet diffuser-discharge Mach number of 0.18 was assumed for the
calculations. The model was designed for operation with the inlet on
the bottom,.but negative-angle-of-attack data permitted simulation of
operation with the inlet on top. From the figure, (F—D)ZFi for the bottom

inlet is greater than that for the top inlet at a given value of trim 1lift
coefficient. At a given angle of attack, however, (F-D)/Fi is greater

for the top inlet than for the bottom inlet as shown by the lines in the
figure connecting equal values of angle of attack. Thus, the comparison
of(F—D)/Fi for the top and bottom inlets of the complete aircraft con-
figuration is similar to that observed for the inlet and fuselage con-
figuration of this investigation. It should be pointed out that the
fuselage of the model of reference 2 had a flat-bottomed section just
ahead of the inlet which, for operation with the inlet on the bottom,
formed an effective compression surface for the entering flow, partic-
ularly at positive angles of attack. With the inlet on top (model in-
verted), the flat section would lose its effectiveness as a compression
surface at positive angles of attack and may even be detrimental to
inlet performance. Consequently, the model is not necessarily considered
a sound design for operation with the inlet on top.

Although the data presented herein generally indicated superior
performance for the bottom inlet at a given 1lift coefficient, the top
inlet was generally superior at @ given angle of attack. As discussed
previously in this section, the change in angle of attack necessary for
a complete aircraft to compensate for the change in lift produced by
changing the location of the inlet from the bottom to the top of the
fuselage is not as great as that required for the inlet and fuselage
configuration. If the inlet 1ift interference becomes very small in
proportion to the 1ift supplied by the wing, the(F—D)/Fi variation will

approach that shown in figure 7 for angle of attack where the top inlet
is comparable or superior to the bottom inlet.

SUMMARY OF RESULTS

An investigation was conducted to obtain a performance comparison
of a ramp-type scoop inlet located either on top or bottom of a body of
revolution at Mach numbers from 1.5 to 2.0, and the following results
were obtained:

1. At angle of attack, changing the inlet location from the bottom

to the top of the fuselage decreased both configuration drag and inlet
pressure recovery.
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2. In terms of thrust-minus-drag for a typical turbojet-engine
installation, the top inlet was slightly superior to the bottom inlet at
a given angle of attack.

3. Because of favorable and unfavorable 1lift interference for the
bottom and top inlets, respectively, the thrust-minus-drag performance
of the bottom inlet was generally superior to that of the top inlet at
comparable 1lift coefficients for all but the lower values of 1ift
coefficient.

4. Comparison of top- and bottom-inlet performance for a complete
aircraft configuration having a fuselage scoop-type inlet and a typical
turbojet-engine installation yielded results similar to that of the
inlet and fuselage combination.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, March 11, 1954
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